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Chapter Four 

Integral Transformation 

1- Fourier Transforms: 
The Fourier transform provides a representation of functions defined over an infinite 

interval and having no particular periodicity, in terms of a superposition of sinusoidal 

functions. It may thus be considered as a generalisation of the Fourier series representation 

of periodic functions. Since Fourier transforms are often used to represent time-varying 

functions, we shall present much of our discussion in terms of f(t), rather than f(x), although 

in some spatial examples f(x) will be the more natural notation. 
 

 In order to develop the transition from Fourier series to Fourier transforms, we first 

recall that a function of period T may be represented as a complex Fourier series, 

 

𝑓(𝑡) =  ∑  𝑐𝑟  𝑒𝑥𝑝 (
2𝜋𝑖𝑟𝑡

𝑇
) = 

∞

𝑟=−∞

∑  𝑐𝑟  𝑒𝑥𝑝(𝑖𝑤𝑟𝑡) 

∞

𝑟=−∞

……………(114) 

 

where ωr = 2πr/T. As the period T tends to infinity, the ‘frequency quantum’ ∆ω = 

2π/T becomes vanishingly small and the spectrum of allowed frequencies ωr becomes a 

continuum. Thus, the infinite sum of terms in the Fourier series becomes an integral, and 

the coefficients cr become functions of the continuous variable ω, as follows. 

 

𝑐𝑟 =
1

𝑇
∫ 𝑓(𝑡)

𝑇 2⁄

−𝑇 2⁄

  𝑒𝑥𝑝 (−
2𝜋𝑖𝑟𝑡

𝑇
)𝑑𝑡 =

∆𝑤

2𝜋
∫ 𝑓(𝑡)

𝑇 2⁄

−𝑇 2⁄

  𝑒𝑥𝑝(−𝑖𝑤𝑟𝑡)𝑑𝑡 ……………(115) 

 

where we have written the integral in two alternative forms and, for convenience, 

made one period run from −T /2 to +T /2 rather than from 0 to T. Substituting from (115) 

into (114) gives 

𝑓(𝑡) =
∆𝑤

2𝜋
∑  ∫ 𝑓(𝑢)

𝑇 2⁄

−𝑇 2⁄

  𝑒𝑥𝑝(−𝑖𝑤𝑟𝑢) 𝑒𝑥𝑝(𝑖𝑤𝑟𝑡) 𝑑𝑢………………(116) 

∞

𝑟=−∞
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 At this stage ωr is still a discrete function of r equal to 2πr/T. The solid points in 

figure 4.1 are a plot of (say, the real part of) cr 𝑒𝑥𝑝(𝑖𝑤𝑟𝑡) as a function of r (or equivalently 

of ωr) and it is clear that (2π/T) cr 𝑒𝑥𝑝(𝑖𝑤𝑟𝑡) gives the area of the rth broken-line rectangle. 

If T tends to ∞ then ∆ω (= 2π/T) becomes infinitesimal, the width of the rectangles tends 

to zero and, from the mathematical definition of an integral,  

∑
∆𝜔

2𝜋
  𝑔(𝜔𝑟) 𝑒

𝑖𝜔𝑟𝑡

∞

𝑟=−∞

 →  
1

 2𝜋
 ∫  𝑔(𝜔) 𝑒𝑖𝜔𝑡 𝑑𝜔

∞

−∞

 

 

In this particular case 

 

∫ 𝑓(𝑢)

𝑇 2⁄

−𝑇 2⁄

  𝑒𝑥𝑝(−𝑖𝑤𝑟𝑢) 𝑑𝑢 

and (114) becomes 

 

𝑓(𝑡) =
1

2𝜋
∫   𝑒𝑖𝜔𝑡 𝑑𝜔

∞

−∞

∫ 𝑓(𝑢)

∞

−∞

  𝑒−𝑖𝑤𝑢  𝑑𝑢 ……………(117) 

 

 
 

Figure 4.1 The relationship between the Fourier terms for a function of period T and the 

Fourier integral (the area below the solid line) of the function 
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This result is known as Fourier’s inversion theorem. From it we may define the Fourier 

transform of f(t) by 

 

𝑓(𝑤) =
1

√2𝜋
∫ 𝑓(𝑡)

∞

−∞

  𝑒−𝑖𝑤𝑡  𝑑𝑡 ……………(118) 

and its inverse by 

 

𝑓(𝑡) =
1

√2𝜋
∫ 𝑓(𝑤)

∞

−∞

  𝑒𝑖𝑤𝑡  𝑑𝑤……………(119) 

 

▶Find the Fourier transform of the exponential decay function f(t)=0 for t < 0 and f(t) = 

A e−λt for t ≥ 0 (λ > 0). 

 

Using the definition (118) and separating the integral into two parts, 

 

𝑓(𝑤) =
1

√2𝜋
[ ∫𝑓(𝑡)

0

−∞

  𝑒−𝑖𝑤𝑡  𝑑𝑡 + ∫ 𝑓(𝑡)

∞

0

  𝑒−𝑖𝑤𝑡  𝑑𝑡] 

 

𝑓(𝑤) =
1

√2𝜋
[ ∫(0)

0

−∞

  𝑒−𝑖𝑤𝑡  𝑑𝑡 + 𝐴∫ 𝑒−𝜆𝑡

∞

0

  𝑒−𝑖𝑤𝑡  𝑑𝑡] 

 

 

𝑓(𝑤) =
1

√2𝜋
[0 + 𝐴 [−

𝑒−(𝜆+𝑖𝑤)𝑡

(𝜆 + 𝑖𝑤)
]
0

∞

] =
𝐴

√2𝜋(𝜆 + 𝑖𝑤)
 

 

which is the required transform. It is clear that the multiplicative constant A does not affect 

the form of the transform, merely its amplitude. ◀ 

 

▶Find the Fourier transform of the double sided exponential 𝑓(𝑡)  =   𝑒−𝑎|𝑡| with (a > 0). 
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𝑓(𝑤) =
1

√2𝜋
[ ∫𝑓(𝑡)

0

−∞

  𝑒−𝑖𝑤𝑡  𝑑𝑡 + ∫ 𝑓(𝑡)

∞

0

  𝑒−𝑖𝑤𝑡  𝑑𝑡] 

 

𝑓(𝑤) =
1

√2𝜋
[ ∫𝑒𝑎𝑡  

0

−∞

  𝑒−𝑖𝑤𝑡  𝑑𝑡 + ∫ 𝑒−𝑎𝑡

∞

0

  𝑒−𝑖𝑤𝑡  𝑑𝑡] 

 

𝑓(𝑤) =
1

√2𝜋
[

1

𝑎 − 𝑖𝑤
+

1

𝑎 + 𝑖𝑤
] =

1

√2𝜋
 .

2𝑎

𝑎2 + 𝑤2
  

 

▶Find the Fourier transform of the normalised Gaussian distribution 

 𝑓(𝑡)  =  
1

𝜏  √2𝜋
  𝑒𝑥𝑝 (−

𝑡2

2𝜏2
)  , −∞ < 𝑡 <  ∞. 

This Gaussian distribution is centered on t = 0 and has a root mean square deviation ∆t = 

τ. 

Using the definition (116), the Fourier transform of f(t) is given by 

𝑓(𝑤) =
1

√2𝜋
∫ 𝑓(𝑡)

∞

−∞

  𝑒−𝑖𝑤𝑡  𝑑𝑡 

 

𝑓(𝑤) =
1

2𝜋𝜏
∫ 𝑒 

(−
𝑡2

2𝜏2)  

∞

−∞

  𝑒−𝑖𝑤𝑡  𝑑𝑡 =
1

2𝜋𝜏
∫ 𝑒 

(−
𝑡2

2𝜏2−𝑖𝑤𝑡)

∞

−∞

 𝑑𝑡 

 

𝑓(𝑤) =
1

2𝜋𝜏
∫ 𝑒 

−
1

2𝜏2(𝑡
2+𝑖2𝜏2𝑤𝑡)

  

∞

−∞

   𝑑𝑡 =
1

2𝜋𝜏
∫ 𝑒 

−
1

2𝜏2(𝑡
2+𝑖2𝜏2𝑤𝑡+(𝑖𝜏2𝑤)2−(𝑖𝜏2𝑤)2)

∞

−∞

 𝑑𝑡 

 

𝑓(𝑤) =
𝑒−

𝜏2𝑤2

2

2𝜋𝜏
∫ 𝑒 

−
1

2𝜏2(𝑡
2+𝑖2𝜏2𝑤𝑡+(𝑖𝜏2𝑤)2)

∞

−∞

 𝑑𝑡 =
𝑒−

𝜏2𝑤2

2

2𝜋𝜏
∫ 𝑒 

−
(𝑡+𝑖𝜏2𝑤)2

2𝜏2

∞

−∞

 𝑑𝑡 

 

𝑓(𝑤) =
𝑒−

𝜏2𝑤2

2

√2𝜋
 

In the above example the root mean square deviation in t was τ, and so it is seen that the 

deviations or ‘spreads’ in t and in ω are inversely related: 
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∆ω ∆t = 1 

 

 

1.1 Odd and even functions: 

If f(t) is odd or even then we may derive alternative forms of Fourier’s inversion 

theorem, which lead to the definition of different transform pairs. Let us first consider an 

odd function f(t) = −f(−t), whose Fourier transform is given by: 

𝑓(𝑤) =
1

√2𝜋
∫ 𝑓(𝑡)

∞

−∞

  𝑒−𝑖𝑤𝑡  𝑑𝑡 

𝑓(𝑤) =
1

√2𝜋
∫ 𝑓(𝑡)

∞

−∞

 (cos𝑤𝑡 − 𝑖 sin𝑤𝑡)   𝑑𝑡 

 

𝑓(𝑤) =
−2𝑖

√2𝜋
∫ 𝑓(𝑡)

∞

0

sin𝑤𝑡   𝑑𝑡 

 

where in the last line we use the fact that f(t) and sin ωt are odd, whereas cos ωt is even. 

 We note that 𝑓(−𝜔)  =  −𝑓(𝜔), i.e. 𝑓(𝜔),  is an odd function of ω. Hence 

𝑓(𝑡) =
1

√2𝜋
∫ 𝑓(𝑤)

∞

−∞

  𝑒𝑖𝑤𝑡  𝑑𝑤 =
2𝑖

√2𝜋
∫ 𝑓(𝑤)

∞

0

sin𝑤𝑡   𝑑𝑤 

 

𝑓(𝑡) =
2

𝜋
∫ sin𝑤𝑡

∞

0

  𝑑𝑤∫ 𝑓(𝑢)

∞

0

sin𝑤𝑢   𝑑𝑢 

Thus we may define the Fourier sine transform pair for odd functions: 

𝑓𝑠(𝑤) = √
2

𝜋
∫ 𝑓(𝑡)

∞

0

sin𝑤𝑡   𝑑𝑡 ……………(120) 

H.W. Find the Fourier transform of the rectangular pulse: 

𝑓(𝑡) =  
1  𝑓𝑜𝑟 −𝑇 ≤ 𝑡 ≤ 𝑇

0 𝑓𝑜𝑟  |𝑡| > 𝑇
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𝑓(𝑡) = √
2

𝜋
∫ 𝑓𝑠(𝑤)

∞

0

sin𝑤𝑡   𝑑𝑤……………(121) 

 

For an even function, i.e. one for which f(t) = f(−t), we can define the Fourier cosine 

transform pair in a similar way, but with sin ωt replaced by cos ωt. 

𝑓𝑐(𝑤) = √
2

𝜋
∫ 𝑓(𝑡)

∞

0

cos𝑤𝑡   𝑑𝑡 ……………(122) 

𝑓(𝑡) = √
2

𝜋
∫ 𝑓𝑐(𝑤)

∞

0

cos𝑤𝑡   𝑑𝑤……………(123) 

▶Find the Fourier sine transform of function 𝑓(𝑡)  =   𝑒−𝑎𝑡 with (a > 0). 

𝑓𝑠(𝑤) = √
2

𝜋
∫ 𝑓(𝑡)

∞

0

sin𝑤𝑡   𝑑𝑡 = √
2

𝜋
∫ 𝑒−𝑎𝑡

∞

0

sin𝑤𝑡   𝑑𝑡 

𝑓𝑠(𝑤) = √
2

𝜋
∫ 𝑒−𝑎𝑡

∞

0

(
𝑒𝑖𝑤𝑡 − 𝑒−𝑖𝑤𝑡

2𝑖
)   𝑑𝑡 =

1

2𝑖
√

2

𝜋
∫(𝑒−(𝑎−𝑖𝑤)𝑡 − 𝑒−(𝑎+𝑖𝑤)𝑡)  𝑑𝑡

∞

0

 

𝑓𝑠(𝑤) =
1

2𝑖
√

2

𝜋
[
𝑒−(𝑎−𝑖𝑤)𝑡

−(𝑎 − 𝑖𝑤)
+

𝑒−(𝑎+𝑖𝑤)𝑡

(𝑎 + 𝑖𝑤)
]
0

∞

=
1

2𝑖
√

2

𝜋
[

1

(𝑎 − 𝑖𝑤)
−

1

(𝑎 + 𝑖𝑤)
] 

 

∴  𝑓𝑠(𝑤) =
1

2𝑖
√

2

𝜋
[
(𝑎 + 𝑖𝑤) − (𝑎 − 𝑖𝑤)

(𝑎2 + 𝑤2)
] =

1

2𝑖
√

2

𝜋
 

2𝑖𝑤

(𝑎2 + 𝑤2)
= √

2

𝜋
 

𝑤

(𝑎2 + 𝑤2)
   

 

2- Laplace transforms: 
  

Often we are interested in functions f(t) for which the Fourier transform does not 

exist because 𝑓 ↛ 0 as t → ∞, and so the integral defining 𝑓 does not converge. This would 

be the case for the function f(t) = t, which does not possess a Fourier transform. 

Furthermore, we might be interested in a given function only for t > 0, for example when 

we are given the value at t = 0 in an initial-value problem. This leads us to consider the 

Laplace transform, 𝑓(̅𝑠) or ℒ[𝑓(𝑡)]which is defined by 
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𝑓(̅𝑠) = ∫ 𝑓(𝑡)

∞

0

  𝑒−𝑠𝑡  𝑑𝑡 ……………(124) 

 

provided that the integral exists. We assume here that s is real, but complex values would 

have to be considered in a more detailed study. In practice, for a given function f(t) there 

will be some real number 𝑠0 such that the integral in (124) exists for 𝑠 > 𝑠0 but diverges 

for 𝑠 ≤ 𝑠0. 

 Through (122) we define a linear transformation ℒ that converts functions of the 

variable t to functions of a new variable s: 

 

ℒ [𝑎𝑓1(𝑡) +  𝑏𝑓2(𝑡)] =  𝑎ℒ [𝑓1(𝑡)] +  𝑏ℒ [𝑓2(𝑡)] =  𝑎 𝑓1̅(𝑠) +  𝑏 𝑓2̅(𝑠)……………(125) 

 

 

▶Find the Laplace transforms of the functions (𝑖)𝑓(𝑡) = 1, (𝑖𝑖)𝑓(𝑡) =  𝑒𝑎𝑡 , (𝑖𝑖𝑖)𝑓(𝑡) =

 𝑡𝑛 , 𝑓𝑜𝑟 𝑛 =  0, 1, 2, … 
 

(i) By direct application of the definition of a Laplace transform (124), we find 

ℒ[1] = ∫(1)

∞

0

  𝑒−𝑠𝑡   𝑑𝑡 = [−
𝑒−𝑠𝑡

𝑠
]
0

∞

= 
1

𝑠
,      𝑖𝑓 𝑠 > 0 

(ii) Again using (122) directly, we find 

 

ℒ[𝑒𝑎𝑡] = ∫ 𝑒𝑎𝑡

∞

0

  𝑒−𝑠𝑡  𝑑𝑡 = [
𝑒(𝑎−𝑠)𝑡

(𝑎 − 𝑠)
]
0

∞

=
1

𝑠 − 𝑎
,      𝑖𝑓 𝑠 > 𝑎 

 

(iii) Once again using the definition (124) we have 

ℒ[𝑡𝑛] = ∫ 𝑡𝑛

∞

0

  𝑒−𝑠𝑡   𝑑𝑡 

Integrating by parts we find 

ℒ[𝑡𝑛] = ∫ 𝑡𝑛

∞

0

  𝑒−𝑠𝑡   𝑑𝑡 =  [
−𝑡𝑛𝑒−𝑠𝑡

𝑠
]
0

∞

+
𝑛

𝑠
∫ 𝑡𝑛−1  𝑒−𝑠𝑡  𝑑𝑡

∞

0

= 0 +
𝑛

𝑠
ℒ[𝑡𝑛−1] 𝑖𝑓 𝑠 > 0 

If   𝑛 = 0 →   𝑓(𝑡) = 𝑡0 = 1   →  ℒ[1] =
1

𝑠
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If   𝑛 = 1 →   𝑓(𝑡) = 𝑡   →  ℒ[𝑡] =
1

𝑠2
 

If   𝑛 = 2 →   𝑓(𝑡) = 𝑡2    →  ℒ[𝑡2] =
2!

𝑠3
 

If   𝑛 = 3 →   𝑓(𝑡) = 𝑡3    →  ℒ[𝑡3] =
3!

𝑠4
 

⋮ 

If   𝑛 = 𝑛 →   𝑓(𝑡) = 𝑡𝑛    →  ℒ[𝑡𝑛] =
𝑛!

𝑠𝑛+1
 

 

▶Using table 4.1 find f(t) if 

𝑓(̅𝑠) =
𝑠 + 3

𝑠(𝑠 + 1)
 

Using partial fractions 𝑓(̅𝑠) may be written 

𝑓(̅𝑠) =
3

𝑠
−

2

(𝑠 + 1)
 

Comparing this with the standard Laplace transforms in table 4.1, we find that the inverse 

transform of 3/s is 3 for s > 0 and the inverse transform of 2/(s + 1) is 2e−t for s > −1, and so 

𝑓(𝑡) = 3 −  2𝑒 −𝑡 ,                 𝑖𝑓 𝑠 >  0 

 

H.W. Find the Laplace transform to prove: 

ℒ[sin 𝑏𝑡] =
𝑏

(𝑠2 + 𝑏2)
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Table 4.1 Standard Laplace transforms. The transforms are valid for s > s0 


