Chapter Four

Integral Transformation

1- Fourier Transforms:
The Fourier transform provides a representation of functions defined over an infinite

interval and having no particular periodicity, in terms of a superposition of sinusoidal
functions. It may thus be considered as a generalisation of the Fourier series representation
of periodic functions. Since Fourier transforms are often used to represent time-varying
functions, we shall present much of our discussion in terms of f(t), rather than f(x), although

in some spatial examples f(x) will be the more natural notation.

In order to develop the transition from Fourier series to Fourier transforms, we first

recall that a function of period T may be represented as a complex Fourier series,
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where w, = 2zr/T. As the period T tends to infinity, the ‘frequency quantum’ Aw =
27/T becomes vanishingly small and the spectrum of allowed frequencies w, becomes a
continuum. Thus, the infinite sum of terms in the Fourier series becomes an integral, and

the coefficients ¢, become functions of the continuous variable w, as follows.
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where we have written the integral in two alternative forms and, for convenience,
made one period run from —T /2 to +T /2 rather than from 0 to T. Substituting from (115)
into (114) gives
T/2

f(t) = 2—: Z f f(u) exp(—iw,u) exp(iw,t) du ... .. v v o ... (116)
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At this stage wy is still a discrete function of r equal to 2z#/T. The solid points in
figure 4.1 are a plot of (say, the real part of) ¢, exp(iw,.t) as a function of r (or equivalently
of wr) and it is clear that (27/T) ¢, exp(iw,t) gives the area of the rth broken-line rectangle.
If T tends to o then Aw (= 2n/T) becomes infinitesimal, the width of the rectangles tends

to zero and, from the mathematical definition of an integral,
> — g(w,) etrt - - joo g(w) e dw
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In this particular case
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and (114) becomes
f) = %J_o:o et dw Jf(u) e dU s e (117)
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Figure 4.1 The relationship between the Fourier terms for a function of period T and the
Fourier integral (the area below the solid line) of the function



This result is known as Fourier’s inversion theorem. From it we may define the Fourier

transform of f(t) by

Fa 1 [ —iwt
and its inverse by
() = \/%_L fw) e dw...........(119)

» Find the Fourier transform of the exponential decay function f(t)=0 for t < 0 and f(t) =
Ae*fort>0(\>0).

Using the definition (118) and separating the integral into two parts,
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which is the required transform. It is clear that the multiplicative constant A does not affect

the form of the transform, merely its amplitude. <«

»Find the Fourier transform of the double sided exponential f(t) = e~%tl with (a > 0).
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» Find the Fourier transform of the normalised Gaussian distribution

1 t2
t) = exp (—==) ,—o0 <t < oo.
) = —= e (-3
This Gaussian distribution is centered on t = 0 and has a root mean square deviation At =
T.
Using the definition (116), the Fourier transform of f(t) is given by
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In the above example the root mean square deviation in t was 1, and so it is seen that the
deviations or ‘spreads’ in t and in ® are inversely related:
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H.W. Find the Fourier transform of the rectangular pulse:

(1 for -T<t<T
f(t)_{O for |t]| > T }

1.1 Odd and even functions:
If f(t) is odd or even then we may derive alternative forms of Fourier’s inversion

theorem, which lead to the definition of different transform pairs. Let us first consider an

odd function £(¢) = —f(—t), whose Fourier transform is given by:

Fw) = —— f (t) e™™* dt
S _\/ﬁ_wf )
) = jo(t) t —isinwt) dt
f(w)—m_oof (coswt — i sinwt)

~ —2i
fw) = jf(t) sinwt dt

where in the last line we use the fact that f(t) and sin wt are odd, whereas cos wt is even.

We note that f(—w) = —f(w), i.e. f(w), isan odd function of w. Hence

f() = f fw) et dw = f (w) sinwt dw
—00 0
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2 (0]
f() = ;[ sinwt de f(u) sinwu du
0 0
Thus we may define the Fourier sine transform pair for odd functions:

fs(w)=\/gff(t)sinwt dt oo ve ave v e (120)
0
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f® =\/;Jﬁg(w)sinwt dw ... .o e (121)
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For an even function, i.e. one for which f{z) = f(—t), we can define the Fourier cosine

transform pair in a similar way, but with sin wt replaced by cos wt.

- 2 Oo
fe(w) =\/;jf(t) coswt dt ...............(122)
0
27 .
f( =\/;jfc(w)coswt Aw ... o cev e .. (123)
0

» Find the Fourier sine transform of function f(t) = e~%f with (a > 0).

fsw) =\/%ff(t)SiHWt dt=\/gj e “sinwt dt
0 0

F(w) = \/%j p-at (eth ;ie lwt> i :%\/gf(e_(a_iw)t_e—(aﬂmt) dt
0 0
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2- Laplace transforms:

Often we are interested in functions f(t) for which the Fourier transform does not
exist because f + 0 as t — oo, and so the integral defining f does not converge. This would
be the case for the function f(t) = t, which does not possess a Fourier transform.
Furthermore, we might be interested in a given function only for t > 0, for example when
we are given the value at t = 0 in an initial-value problem. This leads us to consider the

Laplace transform, f(s) or L[f(t)]which is defined by
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f(s) =ff(t) e St dt v e (124)

0

provided that the integral exists. We assume here that s is real, but complex values would
have to be considered in a more detailed study. In practice, for a given function f(t) there
will be some real number s, such that the integral in (124) exists for s > s, but diverges
fors < s,.

Through (122) we define a linear transformation £ that converts functions of the

variable t to functions of a new variable s:

Llafi(t) + bfz()] = aL [fi(O] + bL[()] = afi(s) + b f(5) e vov v o (125)

» Find the Laplace transforms of the functions (i)f(t) = 1, (i) f(t) = e%, (iii)f(t) =
t",forn = 0,1,2, ...

(i) By direct application of the definition of a Laplace transform (124), we find

S S

L[] =j(1) e~st dt = [—6_51 L1 irsso
0 0

(if) Again using (122) directly, we find

(iii) Once again using the definition (124) we have
L[t"] = f t" e St dt
0
Integrating by parts we find

_tne—st

£[t”]=jt” e St dt = [
If n=0-> ft)=t"=1 > L[1] ==

S

I n
] +—J t" e St dt =0+ —L[t" ]ifs >0
S 0 S 0 S
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If n=1- f(O)=t - L[t]=5
If n=2 > f(t)=t> - L[t}]==
If n=3 > f(t)=t3 - L[t}]==

n!
sn+l

If n=n > f(t)=t" - L[t"] =

» Using table 4.1 find f(t) if
s+ 3

fs)= s(s+1)

Using partial fractions f(s) may be written

32
&) =5=6%D

Comparing this with the standard Laplace transforms in table 4.1, we find that the inverse

transform of 3/s is 3 for s > 0 and the inverse transform of 2/(s + 1) is 2e for s > —1, and so

f(t) =3 — 2e 7%, ifs >0

H.W. Find the Laplace transform to prove:

L[sin bt] = m




flr) f(s) )
¢ c/s 0
cf" cn!/s"t! 0
sin b b/(s* 4 b?) 0
cos b s/(s* +b) 0
e 1/(s—a) a
et n!/(s—a)"! a
sinh af al(s* - a?) a|
coshat s/(s = d?) a|
¢ sin bt b/[(s = a)* + bY] a
¢ cos bt (s—a)/[(s—a) + ] a
11,-"2 %[?I f 33]];’2 0
I—!,.-'i (i‘r,/.'::]!-"'j 0
ot — 1y) g0 0
Hit—10) = {1 fort =1y " 0
0 fort<ty

Table 4.1 Standard Laplace transforms. The transforms are valid for s > s



